NOTES # Calculation of the Land Evaluation (LE) Score # Part 1. Land Capability Classification (LCC) Score: - (1) Determine the total acreage of the project. - (2) Determine the soil types within the project area and enter them in **Column A** of the **Land Evaluation Worksheet** provided on page 2-A. - (3) Calculate the total acres of each soil type and enter the amounts in Column B. - (4) Divide the acres of each soil type (**Column B**) by the total acreage to determine the proportion of each soil type present. Enter the proportion of each soil type in **Column C**. - (5) Determine the LCC for each soil type from the applicable Soil Survey and enter it in Column D. - (6) From the <u>LCC Scoring Table</u> below, determine the point rating corresponding to the LCC for each soil type and enter it in **Column E**. # LCC Scoring Table | LCC
Class | I | lle | lls,w | IIIe | IIIs,w | IVe | IVs,w | V | VI | VII | VIII | |--------------|-----|-----|-------|------|--------|-----|-------|----|----|-----|------| | Points | 100 | 90 | 80 | 70 | 60 | 50 | 40 | 30 | 20 | 10 | 0 | - (7) Multiply the proportion of each soil type ($Column\ C$) by the point score ($Column\ E$) and enter the resulting scores in $Column\ F$. - (8) Sum the LCC scores in Column F. - (9) Enter the LCC score in box <1> of the **Final LESA Score Sheet** on page 10-A. #### Part 2. Storie Index Score: - (1) Determine the Storie Index rating for each soil type and enter it in **Column G**. - (2) Multiply the proportion of each soil type (**Column C**) by the Storie Index rating (**Column G**) and enter the scores in **Column H**. - (3) Sum the Storie Index scores in ${\bf Column\ H}$ to gain the Storie Index Score. - (4) Enter the Storie Index Score in box <2> of the Final LESA Score Sheet on page 10-A. # **Land Evaluation Worksheet** # Land Capability Classification (LCC) and Storie Index Scores | Α | В | С | D | Ε | F | G | Н | |----------|---------|----------------------|-----|-----------------------|-------|-----------------------------|--------| | Soil Map | Project | Proportion | LCC | LCC | LCC | Storie | Storie | | | | of | | | | | Index | | Unit | Acres | Project Area | | Rating | Score | Index | Score | | hf6k | 10.4 | 0.24 | 1 | 100 | 24 | 77 | 18.48 | | hf5g | 32.2 | 0.76 | lls | 80 | 60.8 | 86 | 65.36 | Totals | 42.6 | (Must Sum
to 1.0) | | LCC
Total
Score | 84.8 | Storie Index
Total Score | | # Site Assessment Worksheet 1. # **Project Size Score** | | I | J | K | |------------------------|-----------|-------|-----------| | | LCC Class | LCC | LCC | | | | Class | Class | | | l - II | III | IV - VIII | | | 10.4 | | | | | 32.2 | Total Acres | 42.6 | | | | Project Size
Scores | 80 | | | Highest Project Size Score 80 LESA Worksheet (cont.) # **NOTES** # Calculation of the Site Assessment (SA) Score # Part 1. Project Size Score: - (1) Using **Site Assessment Worksheet 1** provided on page 2-A, enter the acreage of each soil type from **Column B** in the **Column I, J or K** that corresponds to the LCC for that soil. (Note: While the Project Size Score is a component of the Site Assessment calculations, the score sheet is an extension of data collected in the Land Evaluation Worksheet, and is therefore displayed beside it). - (2) Sum Column I to determine the total amount of class I and II soils on the project site. - (3) Sum Column J to determine the total amount of class III soils on the project site. - (4) Sum Column K to determine the total amount of class IV and lower soils on the project site. - (5) Compare the total score for each LCC group in the <u>Project Size Scoring Table</u> below and determine which group receives the highest score. **Project Size Scoring Table** | Class | l or II | Clas | s III | Class IV or Lower | | |---------|---------|---------|--------|-------------------|--------| | Acreage | Points | Acreage | Points | Acreage | Points | | >80 | 100 | >160 | 100 | >320 | 100 | | 60-79 | 90 | 120-159 | 90 | 240-319 | 80 | | 40-59 | 80 | 80-119 | 80 | 160-239 | 60 | | 20-39 | 50 | 60-79 | 70 | 100-159 | 40 | | 10-19 | 30 | 40-59 | 60 | 40-99 | 20 | | 10< | 0 | 20-39 | 30 | 40< | 0 | | | | 10-19 | 10 | | | | | | 10< | 0 | | | (6) Enter the **Project Size Score** (the highest score from the three LCC categories) in box <3> of the **Final LESA Score Sheet** on page 10-A. #### LESA Worksheet (cont.) #### **NOTES** # Part 2. Water Resource Availability Score: - (1) Determine the type(s) of irrigation present on the project site, including a determination of whether there is dryland agricultural activity as well. - (2) Divide the site into portions according to the type or types of irrigation or dryland cropping that is available in each portion. Enter this information in **Column B** of **Site Assessment Worksheet 2. Water Resources Availability**. - (3) Determine the proportion of the total site represented for each portion identified, and enter this information in **Column C**. - (4) Using the <u>Water Resources Availability Scoring Table</u>, identify the option that is most applicable for each portion, based upon the feasibility of irrigation in drought and non-drought years, and whether physical or economic restrictions are likely to exist. Enter the applicable Water Resource Availability Score into **Column D**. - (5) Multiply the Water Resource Availability Score for each portion by the proportion of the project area it represents to determine the weighted score for each portion in **Column E**. - (6) Sum the scores for all portions to determine the project's total Water Resources Availability Score - (7) Enter the Water Resource Availability Score in box <4> of the **Final LESA Score Sheet** on page 10-A. # Site Assessment Worksheet 2. - Water Resources Availability | Α | В | С | D | E | |---------|-------------------|---------------|-------------------|--------------| | | | | Water | Weighted | | Project | Water | Proportion of | Availability | Availability | | Portion | Source | Project Area | Score | Score | | | | | | (C x D) | | 1 | Groundwater wells | 1 | 75 | 75 | | 2 | | | | | | | | | | | | 3 | | | | | | | | | | | | 4 | | | | | | | | | | | | 5 | | | | | | | | | | | | 6 | | | | | | | | (Must Sum | Total Water | | | | | to 1.0) | Resource
Score | /5 | # **Water Resource Availability Scoring Table** | | 1 | Non-Drought Year | S | | | | | |--------|---|-------------------------------|-------------------------------|--------------------------------|-------------------------------|-------------------------------|-------| | Option | | RESTRICTIONS | | | WATER
RESOURCE | | | | · | Irrigated Production Feasible? | Physical
Restrictions
? | Economic
Restrictions
? | Irrigated Production Feasible? | Physical
Restrictions
? | Economic
Restrictions
? | SCORE | | 1 | YES | NO | NO | YES | NO | NO | 100 | | 2 | YES | NO | NO | YES | NO | YES | 95 | | 3 | YES | NO | YES | YES | NO | YES | 90 | | 4 | YES | NO | NO | YES | YES | NO | 85 | | 5 | YES | NO | NO | YES | YES | YES | 80 | | 6 | YES | YES | NO | YES | YES | NO | 75 | | 7 | YES | YES | YES | YES | YES | YES | 65 | | 8 | YES | NO | NO | NO | | | 50 | | 9 | YES | NO | YES | NO | | | 45 | | 10 | YES | YES | NO | NO | | | 35 | | 11 | YES | YES | YES | NO | | | 30 | | 12 | Irrigated production not feasible, but rainfall adequate for dryland production in both drought and non-drought years | | | | | 25 | | | 13 | Irrigated production not feasible, but rainfall adequate for dryland production in non-drought years (but not in drought years) | | | | | 20 | | | 14 | Neither irrigated r | or dryland produc | tion feasible | | | | 0 | #### LESA Worksheet (cont.) # **NOTES** # Part 3. Surrounding Agricultural Land Use Score: - (1) Calculate the project's Zone of Influence (ZOI) as follows: - (a) a rectangle is drawn around the project such that the rectangle is the smallest that can completely encompass the project area. - (b) a second rectangle is then drawn which extends <u>one quarter mile</u> on all sides beyond the first rectangle. - (c) The ZOI includes all parcels that are contained within or are intersected by the second rectangle, less the area of the project itself. - (2) Sum the area of all parcels to determine the total acreage of the ZOI. - (3) Determine which parcels are in agricultural use and sum the areas of these parcels - (4) Divide the area in agriculture found in step (3) by the total area of the ZOI found in step (2) to determine the percent of the ZOI that is in agricultural use. - (5) Determine the Surrounding Agricultural Land Score utilizing the <u>Surrounding Agricultural Land Scoring Table</u> below. # **Surrounding Agricultural Land Scoring Table** | Percent of ZOI
in
Agriculture | Surrounding
Agricultural
Land Score | |-------------------------------------|---| | 90-100 | 100 | | 80-89 | 90 | | 75-79 | 80 | | 70-74 | 70 | | 65-69 | 60 | | 60-64 | 50 | | 55-59 | 40 | | 50-54 | 30 | | 45-49 | 20 | | 40-44 | 10 | | <40 | 0 | | | | (5) Enter the Surrounding Agricultural Land Score in box <5> of the **Final LESA Score Sheet** on page 10-A. # Site Assessment Worksheet 3. Surrounding Agricultural Land and Surrounding Protected Resource Land | A | В | С | D | Е | F | G | |-------------|-------------------------|-----------------------|------------------------|------------------------|-----------------------------|----------------------------| | | | | Surrounding | | | | | Total Acres | Acres in
Agriculture | Acres of
Protected | Percent in Agriculture | Percent
Protected | Surrounding
Agricultural | Protected
Resource | | | , ignound o | Resource
Land | (A/B) | Resource Land
(A/C) | Land Score
(From Table) | Land Score
(From Table) | | 320 | 178 | 82 | 55.6 | 25.6 | 40 | 0 | LESA Worksheet (cont.) # **NOTES** #### Part 4. Protected Resource Lands Score: The Protected Resource Lands scoring relies upon the same Zone of Influence information gathered in Part 3, and figures are entered in Site Assessment Worksheet 3, which combines the surrounding agricultural and protected lands calculations. - (1) Use the total area of the ZOI calculated in Part 3. for the Surrounding Agricultural Land Use score. - (2) Sum the area of those parcels within the ZOI that are protected resource lands, as defined in the California Agricultural LESA Guidelines. - (3) Divide the area that is determined to be protected in Step (2) by the total acreage of the ZOI to determine the percentage of the surrounding area that is under resource protection. - (4) Determine the Surrounding Protected Resource Land Score utilizing the <u>Surrounding Protected Resource</u> Land Scoring Table below. #### **Surrounding Protected Resource Land Scoring Table** | Percent of ZOI | Protected Resource | |----------------|---------------------------| | Protected | Land Score | | 90-100 | 100 | | 80-89 | 90 | | 75-79 | 80 | | 70-74 | 70 | | 65-69 | 60 | | 60-64 | 50 | | 55-59 | 40 | | 50-54 | 30 | | 45-49 | 20 | | 40-44 | 10 | | <40 | 0 | | | | | | | (5) Enter the Protected Resource Land score in box <6> of the Final LESA Score Sheet on page 10-A. LESA Worksheet (cont.) ### **NOTES** # **Final LESA Score Sheet** #### **Calculation of the Final LESA Score:** - (1) Multiply each factor score by the factor weight to determine the weighted score and enter in Weighted Factor Scores column. - (2) Sum the weighted factor scores for the LE factors to determine the total LE score for the project. - (3) Sum the weighted factor scores for the SA factors to determine the total SA score for the project. - (4) Sum the total LE and SA scores to determine the Final LESA Score for the project. | | Factor
Scores | Factor
Weight | Weighted
Factor
Scores | |----------------------------------|------------------|---------------------|------------------------------| | LE Factors | | | | | Land Capability Classification | <1> 84.8 | 0.25 | 21.5 | | Storie
Index | <2> 83.84 | 0.25 | 20.96 | | LE
Subtotal | | 0.50 | 42.46 | | SA Factors | | | | | Project
Size | <3> 80 | 0.15 | 12 | | Water Resource
Availability | <4> 75 | 0.15 | 11.25 | | Surrounding
Agricultural Land | <5> 40 | 0.15 | 6 | | Protected Resource Land | <6> | 0.05 | 0 | | SA
Subtotal | | 0.50 | 18 | | | | Final LESA
Score | 60.46 | For further information on the scoring thresholds under the California Agricultural LESA Model, consult Section 4 of the Instruction Manual. l parcel bou ndaries are *approximat*e. Discrepancies in acerage, shape and location are common. is map is notthe legal survey document to be used in single site determinations. Consult your deed for a legal parcel description. # California Revised Storie Index (CA) The Revised Storie Index is a rating system based on soil properties that govern the potential for soil map unit components to be used for irrigated agriculture in California. The Revised Storie Index assesses the productivity of a soil from the following four characteristics: - Factor A: degree of soil profile development - Factor B: texture of the surface layer - Factor C: steepness of slope - Factor X: drainage class, landform, erosion class, flooding and ponding frequency and duration, soil pH, soluble salt content as measured by electrical conductivity, and sodium adsorption ratio Revised Storie Index numerical ratings have been combined into six classes as follows: - Grade 1: Excellent (81 to 100) - Grade 2: Good (61 to 80) - Grade 3: Fair (41 to 60) - Grade 4: Poor (21 to 40) - Grade 5: Very poor (11 to 20) - Grade 6: Nonagricultural (10 or less) #### Reference: O'Geen, A.T., Southard, S.B., Southard, R.J. 2008. A Revised Storie Index for Use with Digital Soils Information. University of California Division of Agriculture and Natural Resources. Publication 8355. http://anrcatalog.ucanr.edu/pdf/8335.pdf # Report—California Revised Storie Index (CA) | California Revised Storie Index (CA)-Lake County, California | | | | | | | |--|-------------|---------------------------------|-------------------|--|--|--| | Map symbol and soil name | Pct. of map | California Revised Storie Index | Storie Index (CA) | | | | | | unit | Rating class | Value | | | | | 124—Cole variant clay loam | | | | | | | | Cole, variant | 85 | Grade 2 - Good | 77 | | | | | 158—Lupoyoma silt loam, protected | | | | | | | | Lupoyoma | 85 | Grade 1 - Excellent | 86 | | | | # **Data Source Information** Soil Survey Area: Lake County, California Survey Area Data: Version 20, Aug 28, 2023 # **Land Capability Classification** The land capability classification of map units in the survey area is shown in this table. This classification shows, in a general way, the suitability of soils for most kinds of field crops (United States Department of Agriculture, Soil Conservation Service, 1961). Crops that require special management are excluded. The soils are grouped according to their limitations for field crops, the risk of damage if they are used for crops, and the way they respond to management. The criteria used in grouping the soils do not include major and generally expensive landforming that would change slope, depth, or other characteristics of the soils, nor do they include possible but unlikely major reclamation projects. Capability classification is not a substitute for interpretations designed to show suitability and limitations of groups of soils for rangeland, for forestland, or for engineering purposes. In the capability system, soils are generally grouped at three levels: capability class, subclass, and unit. Capability classes, the broadest groups, are designated by the numbers 1 through 8. The numbers indicate progressively greater limitations and narrower choices for practical use. The classes are defined as follows: - Class 1 soils have slight limitations that restrict their use. - Class 2 soils have moderate limitations that restrict the choice of plants or that require moderate conservation practices. - Class 3 soils have severe limitations that restrict the choice of plants or that require special conservation practices, or both. - Class 4 soils have very severe limitations that restrict the choice of plants or that require very careful management, or both. - Class 5 soils are subject to little or no erosion but have other limitations, impractical to remove, that restrict their use mainly to pasture, rangeland, forestland, or wildlife habitat. - Class 6 soils have severe limitations that make them generally unsuitable for cultivation and that restrict their use mainly to pasture, rangeland, forestland, or wildlife habitat. - Class 7 soils have very severe limitations that make them unsuitable for cultivation and that restrict their use mainly to grazing, forestland, or wildlife habitat. - Class 8 soils and miscellaneous areas have limitations that preclude commercial plant production and that restrict their use to recreational purposes, wildlife habitat, watershed, or esthetic purposes. Capability subclasses are soil groups within one class. They are designated by adding a small letter, e, w, s, or c, to the class numeral, for example, 2e. The letter e shows that the main hazard is the risk of erosion unless close-growing plant cover is maintained; w shows that water in or on the soil interferes with plant growth or cultivation (in some soils the wetness can be partly corrected by artificial drainage); s shows that the soil is limited mainly because it is shallow, droughty, or stony; and c, used in only some parts of the United States, shows that the chief limitation is climate that is very cold or very dry. In class 1 there are no subclasses because the soils of this class have few limitations. Class 5 contains only the subclasses indicated by w, s, or c because the soils in class 5 are subject to little or no erosion. # Report—Land Capability Classification | Land Cap | Land Capability Classification–Lake County, California | | | | | | | | |-----------------------------------|--|------------------|-----------------------------|-----------|--|--|--|--| | Map unit symbol and name | Pct. of map unit | Component name | Land Capability
Subclass | | | | | | | | | Nonirrig
ted | | Irrigated | | | | | | 124—Cole variant clay loam | | | | | | | | | | | 85 | Cole, variant | 3s | 2s | | | | | | | 4 | Lupoyoma | _ | _ | | | | | | | 4 | Clear lake | _ | _ | | | | | | | 4 | Still | _ | | | | | | | | 3 | Unnamed | _ | _ | | | | | | 158—Lupoyoma silt loam, protected | | | | | | | | | | | 85 | Lupoyoma | 3c | 1 | | | | | | | 3 | Xerofluvents | _ | - | | | | | | | 3 | Cole, variant | _ | _ | | | | | | | 3 | Kelsey | _ | _ | | | | | | | 3 | Maywood, variant | _ | _ | | | | | | | 3 | Unnamed | _ | _ | | | | | # **Data Source Information** Soil Survey Area: Lake County, California Survey Area Data: Version 20, Aug 28, 2023 #### MAP LEGEND #### Area of Interest (AOI) Area of Interest (AOI) #### Soils Soil Map Unit Polygons Soil Map Unit Points #### Special Point Features tos Blowout Borrow Pit Clay Spot Closed Depression Gravel Pit Gravelly Spot Landfill Lava Flow Marsh or swamp Mine or Quarry Miscellaneous Water Perennial Water → Saline Spot Sandy Spot Severely Eroded Spot Sinkhole Slide or Slip #### OLIVE Spoil Area Stony Spot Very Stony Spot Wet Spot Other Special Line Features #### Water Features Δ Streams and Canals #### Transportation Rails Interstate Highways US Routes Major Roads Local Roads #### Background Aerial Photography #### MAP INFORMATION The soil surveys that comprise your AOI were mapped at 1:24.000. Warning: Soil Map may not be valid at this scale. Enlargement of maps beyond the scale of mapping can cause misunderstanding of the detail of mapping and accuracy of soil line placement. The maps do not show the small areas of contrasting soils that could have been shown at a more detailed scale Please rely on the bar scale on each map sheet for map measurements. Source of Map: Natural Resources Conservation Service Web Soil Survey URL: Coordinate System: Web Mercator (EPSG:3857) Maps from the Web Soil Survey are based on the Web Mercator projection, which preserves direction and shape but distorts distance and area. A projection that preserves area, such as the Albers equal-area conic projection, should be used if more accurate calculations of distance or area are required. This product is generated from the USDA-NRCS certified data as of the version date(s) listed below. Soil Survey Area: Lake County, California Survey Area Data: Version 20, Aug 28, 2023 Soil map units are labeled (as space allows) for map scales 1:50.000 or larger. Date(s) aerial images were photographed: Apr 7, 2022—May 31, 2022 The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident. # **Map Unit Legend** | Map Unit Symbol | Map Unit Name | Acres in AOI | Percent of AOI | |-----------------------------|-------------------------------|--------------|----------------| | 124 | Cole variant clay loam | 10.4 | 24.6% | | 158 | Lupoyoma silt loam, protected | 32.2 | 75.4% | | Totals for Area of Interest | | 42.6 | 100.0% | **NRCS** Natural Resources Conservation Service A product of the National Cooperative Soil Survey, a joint effort of the United States Department of Agriculture and other Federal agencies, State agencies including the Agricultural Experiment Stations, and local participants # Custom Soil Resource Report for Lake County, California # **Preface** Soil surveys contain information that affects land use planning in survey areas. They highlight soil limitations that affect various land uses and provide information about the properties of the soils in the survey areas. Soil surveys are designed for many different users, including farmers, ranchers, foresters, agronomists, urban planners, community officials, engineers, developers, builders, and home buyers. Also, conservationists, teachers, students, and specialists in recreation, waste disposal, and pollution control can use the surveys to help them understand, protect, or enhance the environment. Various land use regulations of Federal, State, and local governments may impose special restrictions on land use or land treatment. Soil surveys identify soil properties that are used in making various land use or land treatment decisions. The information is intended to help the land users identify and reduce the effects of soil limitations on various land uses. The landowner or user is responsible for identifying and complying with existing laws and regulations. Although soil survey information can be used for general farm, local, and wider area planning, onsite investigation is needed to supplement this information in some cases. Examples include soil quality assessments (http://www.nrcs.usda.gov/wps/portal/nrcs/main/soils/health/) and certain conservation and engineering applications. For more detailed information, contact your local USDA Service Center (https://offices.sc.egov.usda.gov/locator/app?agency=nrcs) or your NRCS State Soil Scientist (http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/contactus/?cid=nrcs142p2 053951). Great differences in soil properties can occur within short distances. Some soils are seasonally wet or subject to flooding. Some are too unstable to be used as a foundation for buildings or roads. Clayey or wet soils are poorly suited to use as septic tank absorption fields. A high water table makes a soil poorly suited to basements or underground installations. The National Cooperative Soil Survey is a joint effort of the United States Department of Agriculture and other Federal agencies, State agencies including the Agricultural Experiment Stations, and local agencies. The Natural Resources Conservation Service (NRCS) has leadership for the Federal part of the National Cooperative Soil Survey. Information about soils is updated periodically. Updated information is available through the NRCS Web Soil Survey, the site for official soil survey information. The U.S. Department of Agriculture (USDA) prohibits discrimination in all its programs and activities on the basis of race, color, national origin, age, disability, and where applicable, sex, marital status, familial status, parental status, religion, sexual orientation, genetic information, political beliefs, reprisal, or because all or a part of an individual's income is derived from any public assistance program. (Not all prohibited bases apply to all programs.) Persons with disabilities who require alternative means for communication of program information (Braille, large print, audiotape, etc.) should contact USDA's TARGET Center at (202) 720-2600 (voice and TDD). To file a complaint of discrimination, write to USDA, Director, Office of Civil Rights, 1400 Independence Avenue, S.W., Washington, D.C. 20250-9410 or call (800) 795-3272 (voice) or (202) 720-6382 (TDD). USDA is an equal opportunity provider and employer. # **Contents** | Preface | 2 | |-----------------------------------|----| | How Soil Surveys Are Made | | | Soil Map | 8 | | Soil Map | 9 | | Legend | 10 | | Map Unit Legend | 11 | | Map Unit Descriptions | 11 | | Lake County, California | 13 | | 124—Cole variant clay loam | 13 | | 158—Lupoyoma silt loam, protected | 14 | | References | 16 | # **How Soil Surveys Are Made** Soil surveys are made to provide information about the soils and miscellaneous areas in a specific area. They include a description of the soils and miscellaneous areas and their location on the landscape and tables that show soil properties and limitations affecting various uses. Soil scientists observed the steepness, length, and shape of the slopes; the general pattern of drainage; the kinds of crops and native plants; and the kinds of bedrock. They observed and described many soil profiles. A soil profile is the sequence of natural layers, or horizons, in a soil. The profile extends from the surface down into the unconsolidated material in which the soil formed or from the surface down to bedrock. The unconsolidated material is devoid of roots and other living organisms and has not been changed by other biological activity. Currently, soils are mapped according to the boundaries of major land resource areas (MLRAs). MLRAs are geographically associated land resource units that share common characteristics related to physiography, geology, climate, water resources, soils, biological resources, and land uses (USDA, 2006). Soil survey areas typically consist of parts of one or more MLRA. The soils and miscellaneous areas in a survey area occur in an orderly pattern that is related to the geology, landforms, relief, climate, and natural vegetation of the area. Each kind of soil and miscellaneous area is associated with a particular kind of landform or with a segment of the landform. By observing the soils and miscellaneous areas in the survey area and relating their position to specific segments of the landform, a soil scientist develops a concept, or model, of how they were formed. Thus, during mapping, this model enables the soil scientist to predict with a considerable degree of accuracy the kind of soil or miscellaneous area at a specific location on the landscape. Commonly, individual soils on the landscape merge into one another as their characteristics gradually change. To construct an accurate soil map, however, soil scientists must determine the boundaries between the soils. They can observe only a limited number of soil profiles. Nevertheless, these observations, supplemented by an understanding of the soil-vegetation-landscape relationship, are sufficient to verify predictions of the kinds of soil in an area and to determine the boundaries. Soil scientists recorded the characteristics of the soil profiles that they studied. They noted soil color, texture, size and shape of soil aggregates, kind and amount of rock fragments, distribution of plant roots, reaction, and other features that enable them to identify soils. After describing the soils in the survey area and determining their properties, the soil scientists assigned the soils to taxonomic classes (units). Taxonomic classes are concepts. Each taxonomic class has a set of soil characteristics with precisely defined limits. The classes are used as a basis for comparison to classify soils systematically. Soil taxonomy, the system of taxonomic classification used in the United States, is based mainly on the kind and character of soil properties and the arrangement of horizons within the profile. After the soil #### Custom Soil Resource Report scientists classified and named the soils in the survey area, they compared the individual soils with similar soils in the same taxonomic class in other areas so that they could confirm data and assemble additional data based on experience and research. The objective of soil mapping is not to delineate pure map unit components; the objective is to separate the landscape into landforms or landform segments that have similar use and management requirements. Each map unit is defined by a unique combination of soil components and/or miscellaneous areas in predictable proportions. Some components may be highly contrasting to the other components of the map unit. The presence of minor components in a map unit in no way diminishes the usefulness or accuracy of the data. The delineation of such landforms and landform segments on the map provides sufficient information for the development of resource plans. If intensive use of small areas is planned, onsite investigation is needed to define and locate the soils and miscellaneous areas. Soil scientists make many field observations in the process of producing a soil map. The frequency of observation is dependent upon several factors, including scale of mapping, intensity of mapping, design of map units, complexity of the landscape, and experience of the soil scientist. Observations are made to test and refine the soil-landscape model and predictions and to verify the classification of the soils at specific locations. Once the soil-landscape model is refined, a significantly smaller number of measurements of individual soil properties are made and recorded. These measurements may include field measurements, such as those for color, depth to bedrock, and texture, and laboratory measurements, such as those for content of sand, silt, clay, salt, and other components. Properties of each soil typically vary from one point to another across the landscape. Observations for map unit components are aggregated to develop ranges of characteristics for the components. The aggregated values are presented. Direct measurements do not exist for every property presented for every map unit component. Values for some properties are estimated from combinations of other properties. While a soil survey is in progress, samples of some of the soils in the area generally are collected for laboratory analyses and for engineering tests. Soil scientists interpret the data from these analyses and tests as well as the field-observed characteristics and the soil properties to determine the expected behavior of the soils under different uses. Interpretations for all of the soils are field tested through observation of the soils in different uses and under different levels of management. Some interpretations are modified to fit local conditions, and some new interpretations are developed to meet local needs. Data are assembled from other sources, such as research information, production records, and field experience of specialists. For example, data on crop yields under defined levels of management are assembled from farm records and from field or plot experiments on the same kinds of soil. Predictions about soil behavior are based not only on soil properties but also on such variables as climate and biological activity. Soil conditions are predictable over long periods of time, but they are not predictable from year to year. For example, soil scientists can predict with a fairly high degree of accuracy that a given soil will have a high water table within certain depths in most years, but they cannot predict that a high water table will always be at a specific level in the soil on a specific date. After soil scientists located and identified the significant natural bodies of soil in the survey area, they drew the boundaries of these bodies on aerial photographs and # Custom Soil Resource Report identified each as a specific map unit. Aerial photographs show trees, buildings, fields, roads, and rivers, all of which help in locating boundaries accurately. # Soil Map The soil map section includes the soil map for the defined area of interest, a list of soil map units on the map and extent of each map unit, and cartographic symbols displayed on the map. Also presented are various metadata about data used to produce the map, and a description of each soil map unit. #### MAP LEGEND #### Area of Interest (AOI) Area of Interest (AOI) #### Soils Soil Map Unit Polygons - Soil Map Unit Lines Soil Map Unit Points #### **Special Point Features** (o) Blowout \boxtimes Borrow Pit Ж Clay Spot \Diamond **Closed Depression** Š Gravel Pit . **Gravelly Spot** 0 Landfill Lava Flow ٨. Marsh or swamp 尕 Mine or Quarry 0 Miscellaneous Water Perennial Water 0 Rock Outcrop + Saline Spot . . Sandy Spot Severely Eroded Spot Sinkhole **3**> Slide or Slip Ø Sodic Spot 8 Spoil Area Stony Spot Ø Ø Very Stony Spot Ø Wet Spot Other Δ Special Line Features #### Water Features _ Streams and Canals #### Transportation ransp Rails ~ Interstate Highways US Routes \sim Major Roads \sim Local Roads #### Background TO Aerial Photography #### MAP INFORMATION The soil surveys that comprise your AOI were mapped at 1:24.000. Warning: Soil Map may not be valid at this scale. Enlargement of maps beyond the scale of mapping can cause misunderstanding of the detail of mapping and accuracy of soil line placement. The maps do not show the small areas of contrasting soils that could have been shown at a more detailed scale. Please rely on the bar scale on each map sheet for map measurements. Source of Map: Natural Resources Conservation Service Web Soil Survey URL: Coordinate System: Web Mercator (EPSG:3857) Maps from the Web Soil Survey are based on the Web Mercator projection, which preserves direction and shape but distorts distance and area. A projection that preserves area, such as the Albers equal-area conic projection, should be used if more accurate calculations of distance or area are required. This product is generated from the USDA-NRCS certified data as of the version date(s) listed below. Soil Survey Area: Lake County, California Survey Area Data: Version 20, Aug 28, 2023 Soil map units are labeled (as space allows) for map scales 1:50.000 or larger. Date(s) aerial images were photographed: Apr 7, 2022—May 31, 2022 The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident. # Map Unit Legend | Map Unit Symbol | Map Unit Name | Acres in AOI | Percent of AOI | |-----------------------------|-------------------------------|--------------|----------------| | 124 | Cole variant clay loam | 10.4 | 24.6% | | 158 | Lupoyoma silt loam, protected | 32.2 | 75.4% | | Totals for Area of Interest | | 42.6 | 100.0% | # **Map Unit Descriptions** The map units delineated on the detailed soil maps in a soil survey represent the soils or miscellaneous areas in the survey area. The map unit descriptions, along with the maps, can be used to determine the composition and properties of a unit. A map unit delineation on a soil map represents an area dominated by one or more major kinds of soil or miscellaneous areas. A map unit is identified and named according to the taxonomic classification of the dominant soils. Within a taxonomic class there are precisely defined limits for the properties of the soils. On the landscape, however, the soils are natural phenomena, and they have the characteristic variability of all natural phenomena. Thus, the range of some observed properties may extend beyond the limits defined for a taxonomic class. Areas of soils of a single taxonomic class rarely, if ever, can be mapped without including areas of other taxonomic classes. Consequently, every map unit is made up of the soils or miscellaneous areas for which it is named and some minor components that belong to taxonomic classes other than those of the major soils. Most minor soils have properties similar to those of the dominant soil or soils in the map unit, and thus they do not affect use and management. These are called noncontrasting, or similar, components. They may or may not be mentioned in a particular map unit description. Other minor components, however, have properties and behavioral characteristics divergent enough to affect use or to require different management. These are called contrasting, or dissimilar, components. They generally are in small areas and could not be mapped separately because of the scale used. Some small areas of strongly contrasting soils or miscellaneous areas are identified by a special symbol on the maps. If included in the database for a given area, the contrasting minor components are identified in the map unit descriptions along with some characteristics of each. A few areas of minor components may not have been observed, and consequently they are not mentioned in the descriptions, especially where the pattern was so complex that it was impractical to make enough observations to identify all the soils and miscellaneous areas on the landscape. The presence of minor components in a map unit in no way diminishes the usefulness or accuracy of the data. The objective of mapping is not to delineate pure taxonomic classes but rather to separate the landscape into landforms or landform segments that have similar use and management requirements. The delineation of such segments on the map provides sufficient information for the development of resource plans. If intensive use of small areas is planned, however, #### Custom Soil Resource Report onsite investigation is needed to define and locate the soils and miscellaneous areas. An identifying symbol precedes the map unit name in the map unit descriptions. Each description includes general facts about the unit and gives important soil properties and qualities. Soils that have profiles that are almost alike make up a *soil series*. Except for differences in texture of the surface layer, all the soils of a series have major horizons that are similar in composition, thickness, and arrangement. Soils of one series can differ in texture of the surface layer, slope, stoniness, salinity, degree of erosion, and other characteristics that affect their use. On the basis of such differences, a soil series is divided into *soil phases*. Most of the areas shown on the detailed soil maps are phases of soil series. The name of a soil phase commonly indicates a feature that affects use or management. For example, Alpha silt loam, 0 to 2 percent slopes, is a phase of the Alpha series. Some map units are made up of two or more major soils or miscellaneous areas. These map units are complexes, associations, or undifferentiated groups. A *complex* consists of two or more soils or miscellaneous areas in such an intricate pattern or in such small areas that they cannot be shown separately on the maps. The pattern and proportion of the soils or miscellaneous areas are somewhat similar in all areas. Alpha-Beta complex, 0 to 6 percent slopes, is an example. An association is made up of two or more geographically associated soils or miscellaneous areas that are shown as one unit on the maps. Because of present or anticipated uses of the map units in the survey area, it was not considered practical or necessary to map the soils or miscellaneous areas separately. The pattern and relative proportion of the soils or miscellaneous areas are somewhat similar. Alpha-Beta association, 0 to 2 percent slopes, is an example. An *undifferentiated group* is made up of two or more soils or miscellaneous areas that could be mapped individually but are mapped as one unit because similar interpretations can be made for use and management. The pattern and proportion of the soils or miscellaneous areas in a mapped area are not uniform. An area can be made up of only one of the major soils or miscellaneous areas, or it can be made up of all of them. Alpha and Beta soils, 0 to 2 percent slopes, is an example. Some surveys include *miscellaneous areas*. Such areas have little or no soil material and support little or no vegetation. Rock outcrop is an example. # Lake County, California # 124—Cole variant clay loam #### **Map Unit Setting** National map unit symbol: hf5g Elevation: 1,300 to 1,400 feet Mean annual precipitation: 28 inches Mean annual air temperature: 57 degrees F Frost-free period: 150 to 205 days Farmland classification: Prime farmland if irrigated #### **Map Unit Composition** Cole, variant, and similar soils: 85 percent Minor components: 15 percent Estimates are based on observations, descriptions, and transects of the mapunit. #### **Description of Cole, Variant** #### Setting Landform: Flood plains Landform position (two-dimensional): Footslope Landform position (three-dimensional): Tread Down-slope shape: Linear Across-slope shape: Linear Parent material: Alluvium #### Typical profile H1 - 0 to 8 inches: clay loam H2 - 8 to 60 inches: clay #### **Properties and qualities** Slope: 0 to 2 percent Depth to restrictive feature: More than 80 inches Drainage class: Moderately well drained Runoff class: Medium Capacity of the most limiting layer to transmit water (Ksat): Moderately low to moderately high (0.06 to 0.20 in/hr) Depth to water table: More than 80 inches Frequency of flooding: Rare Frequency of ponding: None Maximum salinity: Nonsaline to very slightly saline (0.0 to 2.0 mmhos/cm) Available water supply, 0 to 60 inches: High (about 9.2 inches) #### Interpretive groups Land capability classification (irrigated): 2s Land capability classification (nonirrigated): 3s Hydrologic Soil Group: C Ecological site: R014XG905CA - Clayey Bottom Hydric soil rating: No #### **Minor Components** #### Lupoyoma Percent of map unit: 4 percent Hydric soil rating: No #### Custom Soil Resource Report #### Clear lake Percent of map unit: 4 percent Landform: Basin floors Hydric soil rating: Yes #### Still Percent of map unit: 4 percent Hydric soil rating: No #### Unnamed Percent of map unit: 3 percent Hydric soil rating: No # 158—Lupoyoma silt loam, protected #### **Map Unit Setting** National map unit symbol: hf6k Elevation: 800 to 1.450 feet Mean annual precipitation: 25 to 40 inches Mean annual air temperature: 57 degrees F Frost-free period: 150 to 205 days Farmland classification: Prime farmland if irrigated #### **Map Unit Composition** Lupoyoma and similar soils: 85 percent Minor components: 15 percent Estimates are based on observations, descriptions, and transects of the mapunit. #### **Description of Lupoyoma** #### Setting Landform: Flood plains Landform position (two-dimensional): Backslope Landform position (three-dimensional): Tread Down-slope shape: Linear Across-slope shape: Linear Parent material: Alluvium #### **Typical profile** H1 - 0 to 31 inches: silt loam H2 - 31 to 84 inches: stratified very fine sandy loam to silty clay loam #### Properties and qualities Slope: 0 to 2 percent Depth to restrictive feature: More than 80 inches Drainage class: Moderately well drained Runoff class: Low Capacity of the most limiting layer to transmit water (Ksat): Moderately high (0.20 to 0.57 in/hr) Depth to water table: More than 80 inches Frequency of flooding: Rare #### Custom Soil Resource Report Frequency of ponding: None Available water supply, 0 to 60 inches: High (about 9.9 inches) #### Interpretive groups Land capability classification (irrigated): 1 Land capability classification (nonirrigated): 3c Hydrologic Soil Group: C Ecological site: R014XG907CA - Loamy Bottom Hydric soil rating: No #### **Minor Components** #### Xerofluvents Percent of map unit: 3 percent Landform: Fans Hydric soil rating: Yes #### Cole, variant Percent of map unit: 3 percent Hydric soil rating: No #### Kelsey Percent of map unit: 3 percent Hydric soil rating: No ## Maywood, variant Percent of map unit: 3 percent Hydric soil rating: No #### Unnamed Percent of map unit: 3 percent Hydric soil rating: No # References American Association of State Highway and Transportation Officials (AASHTO). 2004. Standard specifications for transportation materials and methods of sampling and testing. 24th edition. American Society for Testing and Materials (ASTM). 2005. Standard classification of soils for engineering purposes. ASTM Standard D2487-00. Cowardin, L.M., V. Carter, F.C. Golet, and E.T. LaRoe. 1979. Classification of wetlands and deep-water habitats of the United States. U.S. Fish and Wildlife Service FWS/OBS-79/31. Federal Register. July 13, 1994. Changes in hydric soils of the United States. Federal Register. September 18, 2002. Hydric soils of the United States. Hurt, G.W., and L.M. Vasilas, editors. Version 6.0, 2006. Field indicators of hydric soils in the United States. National Research Council. 1995. Wetlands: Characteristics and boundaries. Soil Survey Division Staff. 1993. Soil survey manual. Soil Conservation Service. U.S. Department of Agriculture Handbook 18. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/?cid=nrcs142p2_054262 Soil Survey Staff. 1999. Soil taxonomy: A basic system of soil classification for making and interpreting soil surveys. 2nd edition. Natural Resources Conservation Service, U.S. Department of Agriculture Handbook 436. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/?cid=nrcs142p2 053577 Soil Survey Staff. 2010. Keys to soil taxonomy. 11th edition. U.S. Department of Agriculture, Natural Resources Conservation Service. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/?cid=nrcs142p2 053580 Tiner, R.W., Jr. 1985. Wetlands of Delaware. U.S. Fish and Wildlife Service and Delaware Department of Natural Resources and Environmental Control, Wetlands Section. United States Army Corps of Engineers, Environmental Laboratory. 1987. Corps of Engineers wetlands delineation manual. Waterways Experiment Station Technical Report Y-87-1. United States Department of Agriculture, Natural Resources Conservation Service. National forestry manual. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/home/?cid=nrcs142p2 053374 United States Department of Agriculture, Natural Resources Conservation Service. National range and pasture handbook. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/landuse/rangepasture/?cid=stelprdb1043084 #### Custom Soil Resource Report United States Department of Agriculture, Natural Resources Conservation Service. National soil survey handbook, title 430-VI. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/scientists/?cid=nrcs142p2_054242 United States Department of Agriculture, Natural Resources Conservation Service. 2006. Land resource regions and major land resource areas of the United States, the Caribbean, and the Pacific Basin. U.S. Department of Agriculture Handbook 296. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/?cid=nrcs142p2_053624 United States Department of Agriculture, Soil Conservation Service. 1961. Land capability classification. U.S. Department of Agriculture Handbook 210. http://www.nrcs.usda.gov/Internet/FSE_DOCUMENTS/nrcs142p2_052290.pdf